या पानाचे मुद्रितशोधन झालेले आहे
६८
गणितातल्या गमती जमती



 भूमितीतला एक तर्कदोष चित्र क्रमांक २ मध्ये दाखवला आहे.

 ह्या त्रिकोणात ‘ब क’ ही रेषा ‘च छ' पेक्षा लांब वाटते. आता आपण त्या समान आहेत हे सिद्ध करू !

 ‘चछ' वर 'प' एक कुठलाही बिंदू घ्या. ‘अ’ आणि ‘प' ला जोडणारी सरळ रेषा ‘ब क’ ला ‘फ’ मध्ये मिळते. म्हणजे ‘चछ’ मधल्या प्रत्येक बिंदूला ‘बक’ वर एक बिंदू जोडीदार आहे. त्याचप्रमाणे ‘ब क’ वर कुठलाही बिंदू घेतला तर वरील रचनेचा उपयोग करून आपल्याला ‘चछ' वर त्याचा जोडीदार बिंदू मिळतो.

 म्हणजे ‘चछ’ आणि ‘ब क’ वर समान संख्येने बिंदू आहेत. त्यामुळे त्या सारख्या लांबीच्या झाल्या. नाही का?

 वास्तविक बिंदूला लांबी नसते आणि बिंदूंची संख्या (प्रत्येक रेषेवर) अनंत आहे. शून्य आणि अनंत यांचा गुणाकार करायची परवानगी गणितीय गृहीतके देत नाहीत. म्हणून वरील निष्कर्ष काढणे हा तर्कदोषाचा नमुना होय.

कासवाचा तर्कदोष

 कासवाच्या तर्काप्रमाणे गणित करून पाहू. शंभर याचं अंतर तोडेपर्यंत कासव १० यार्ड पुढे गेलं. ते तोडेपर्यंत कासव १ यार्ड पुढे जाईल. म्हणजे हे अंतर भूमितीश्रेणीने दसपटीने कमी होत जाईल.

 १००, १०, १, ०, ०.१, ०.०१, ०.००१, .........

 कासव म्हणतं की ही क्रमावली संपत नसल्याने ते नेहमीच पुढे असेल. ही आकड्यांची क्रमावली असंख्य असली तरी त्यांची बेरीज अनंत नाही. बेरीज करणं सोपं आहे - त्यातून हा आकडा तयार होतो.

 १११.१११११........

 ही आवर्त दशांशांची संख्या १०००/९ इतकी भरते. म्हणजे इतकं अंतर गेल्यावर ससा कासवाला पकडेल.

 कासवाने मात्र (लबाडीने) असे भासवलं की अगदी अनंत काळपर्यंत शर्यत चालली तरी तेच पुढे राहील ! क्रमावलीने मांडलेले आकडे असंख्य असले तरी त्यांची बेरीज असंख्यच होते असे नाही.

 ‘ऍकिलिस (ग्रीक पुराणकथेतला एक शूर योद्धा) आणि कासव म्हणून गाजलेली ही एक गणितातली तर्कदोषाच्या नमुन्याची गोष्ट आहे. येथे ऍकिलिस ऐवजी ससा हा बदल केला आहे.


♦ ♦ ♦